class: center, middle, inverse, title-slide # Lecture 10 ## Matrix population models ###
WILD3810 (Spring 2021) --- ## Readings > Mills 98-103 --- ## Assumptions of the B-D models #### Over the coming weeks, we will learn about why and how to relax assumption 3: 1) Population closed to immigration and emigration <br/> 2) Model pertains to only the limiting sex, usually females <br/> **3) Birth and death rates are independent of an individual’s age or biological stage** <br/> 4) Birth and death rates are constant -- ### **How can we model population dynamics of populations with complex age structure?** --- ## Age-structured demography ### Consider the following life table: <br/> <table class="table table-striped table-hover table-condensed table-responsive" style="font-size: 22px; margin-left: auto; margin-right: auto;"> <thead> <tr> <th style="text-align:center;"> \(x\) </th> <th style="text-align:center;"> \(m_x\) </th> <th style="text-align:center;"> \(P_x\) </th> </tr> </thead> <tbody> <tr> <td style="text-align:center;"> 0 </td> <td style="text-align:center;"> 0 </td> <td style="text-align:center;"> \(P_0\) </td> </tr> <tr> <td style="text-align:center;"> 1 </td> <td style="text-align:center;"> \(m_1\) </td> <td style="text-align:center;"> \(P_1\) </td> </tr> <tr> <td style="text-align:center;"> 2 </td> <td style="text-align:center;"> \(m_2\) </td> <td style="text-align:center;"> \(P_2\) </td> </tr> <tr> <td style="text-align:center;"> 3 </td> <td style="text-align:center;"> \(m_3\) </td> <td style="text-align:center;"> 0 </td> </tr> </tbody> </table> ??? What do `\(m_x\)` and `\(P_x\)` represent? What can you say about the reproductive and survival schedules of this population? --- ## Age-structred demography #### List population abundance in discrete 1-year age classes `\(\Large (n_i)\)` - e.g., `\(\large n_1\)`, `\(\large n_2\)`, `\(\large n_3\)` - `\(\large n_i\)` is the number of individuals about to experience their `\(\large i^{th}\)` birthday <br/> <img src="figs/age_diagram.png" width="70%" style="display: block; margin: auto;" /> --- ## Age-structured demography <table class="table table-striped table-hover table-condensed table-responsive" style="font-size: 16px; margin-left: auto; margin-right: auto;"> <thead> <tr> <th style="text-align:center;"> \(x\) </th> <th style="text-align:center;"> \(m_x\) </th> <th style="text-align:center;"> \(P_x\) </th> </tr> </thead> <tbody> <tr> <td style="text-align:center;"> 0 </td> <td style="text-align:center;"> 0 </td> <td style="text-align:center;"> \(P_0\) </td> </tr> <tr> <td style="text-align:center;"> 1 </td> <td style="text-align:center;"> \(m_1\) </td> <td style="text-align:center;"> \(P_1\) </td> </tr> <tr> <td style="text-align:center;"> 2 </td> <td style="text-align:center;"> \(m_2\) </td> <td style="text-align:center;"> \(P_2\) </td> </tr> <tr> <td style="text-align:center;"> 3 </td> <td style="text-align:center;"> \(m_3\) </td> <td style="text-align:center;"> 0 </td> </tr> </tbody> </table> <br/> <img src="figs/states.png" width="70%" style="display: block; margin: auto;" /> --- ## Age-structured demography <table class="table table-striped table-hover table-condensed table-responsive" style="font-size: 16px; margin-left: auto; margin-right: auto;"> <thead> <tr> <th style="text-align:center;"> \(x\) </th> <th style="text-align:center;"> \(m_x\) </th> <th style="text-align:center;"> \(P_x\) </th> </tr> </thead> <tbody> <tr> <td style="text-align:center;"> 0 </td> <td style="text-align:center;"> 0 </td> <td style="text-align:center;"> <span style=" border-radius: 4px; padding-right: 4px; padding-left: 4px; background-color: transparent !important;">\(P_0\)</span> </td> </tr> <tr> <td style="text-align:center;"> 1 </td> <td style="text-align:center;"> \(m_1\) </td> <td style="text-align:center;"> <span style=" border-radius: 4px; padding-right: 4px; padding-left: 4px; background-color: yellow !important;">\(P_1\)</span> </td> </tr> <tr> <td style="text-align:center;"> 2 </td> <td style="text-align:center;"> \(m_2\) </td> <td style="text-align:center;"> <span style=" border-radius: 4px; padding-right: 4px; padding-left: 4px; background-color: yellow !important;">\(P_2\)</span> </td> </tr> <tr> <td style="text-align:center;"> 3 </td> <td style="text-align:center;"> \(m_3\) </td> <td style="text-align:center;"> <span style=" border-radius: 4px; padding-right: 4px; padding-left: 4px; background-color: transparent !important;">0</span> </td> </tr> </tbody> </table> <br/> <img src="figs/survival.png" width="70%" style="display: block; margin: auto;" /> --- ## Age-structured demography <table class="table table-striped table-hover table-condensed table-responsive" style="font-size: 16px; margin-left: auto; margin-right: auto;"> <thead> <tr> <th style="text-align:center;"> \(x\) </th> <th style="text-align:center;"> \(m_x\) </th> <th style="text-align:center;"> \(P_x\) </th> </tr> </thead> <tbody> <tr> <td style="text-align:center;"> 0 </td> <td style="text-align:center;"> <span style=" border-radius: 4px; padding-right: 4px; padding-left: 4px; background-color: transparent !important;">0</span> </td> <td style="text-align:center;"> <span style=" border-radius: 4px; padding-right: 4px; padding-left: 4px; background-color: yellow !important;">\(P_0\)</span> </td> </tr> <tr> <td style="text-align:center;"> 1 </td> <td style="text-align:center;"> <span style=" border-radius: 4px; padding-right: 4px; padding-left: 4px; background-color: transparent !important;">\(m_1\)</span> </td> <td style="text-align:center;"> <span style=" border-radius: 4px; padding-right: 4px; padding-left: 4px; background-color: transparent !important;">\(P_1\)</span> </td> </tr> <tr> <td style="text-align:center;"> 2 </td> <td style="text-align:center;"> <span style=" border-radius: 4px; padding-right: 4px; padding-left: 4px; background-color: yellow !important;">\(m_2\)</span> </td> <td style="text-align:center;"> <span style=" border-radius: 4px; padding-right: 4px; padding-left: 4px; background-color: transparent !important;">\(P_2\)</span> </td> </tr> <tr> <td style="text-align:center;"> 3 </td> <td style="text-align:center;"> <span style=" border-radius: 4px; padding-right: 4px; padding-left: 4px; background-color: transparent !important;">\(m_3\)</span> </td> <td style="text-align:center;"> <span style=" border-radius: 4px; padding-right: 4px; padding-left: 4px; background-color: transparent !important;">0</span> </td> </tr> </tbody> </table> <img src="figs/repro2.png" width="63%" style="display: block; margin: auto;" /> --- ## Age-structured demography <table class="table table-striped table-hover table-condensed table-responsive" style="font-size: 16px; margin-left: auto; margin-right: auto;"> <thead> <tr> <th style="text-align:center;"> \(x\) </th> <th style="text-align:center;"> \(m_x\) </th> <th style="text-align:center;"> \(P_x\) </th> </tr> </thead> <tbody> <tr> <td style="text-align:center;"> 0 </td> <td style="text-align:center;"> <span style=" border-radius: 4px; padding-right: 4px; padding-left: 4px; background-color: transparent !important;">0</span> </td> <td style="text-align:center;"> <span style=" border-radius: 4px; padding-right: 4px; padding-left: 4px; background-color: yellow !important;">\(P_0\)</span> </td> </tr> <tr> <td style="text-align:center;"> 1 </td> <td style="text-align:center;"> <span style=" border-radius: 4px; padding-right: 4px; padding-left: 4px; background-color: yellow !important;">\(m_1\)</span> </td> <td style="text-align:center;"> <span style=" border-radius: 4px; padding-right: 4px; padding-left: 4px; background-color: transparent !important;">\(P_1\)</span> </td> </tr> <tr> <td style="text-align:center;"> 2 </td> <td style="text-align:center;"> <span style=" border-radius: 4px; padding-right: 4px; padding-left: 4px; background-color: yellow !important;">\(m_2\)</span> </td> <td style="text-align:center;"> <span style=" border-radius: 4px; padding-right: 4px; padding-left: 4px; background-color: transparent !important;">\(P_2\)</span> </td> </tr> <tr> <td style="text-align:center;"> 3 </td> <td style="text-align:center;"> <span style=" border-radius: 4px; padding-right: 4px; padding-left: 4px; background-color: yellow !important;">\(m_3\)</span> </td> <td style="text-align:center;"> <span style=" border-radius: 4px; padding-right: 4px; padding-left: 4px; background-color: transparent !important;">0</span> </td> </tr> </tbody> </table> <img src="figs/lc_model.png" width="63%" style="display: block; margin: auto;" /> --- ## Age-structured demography #### How many individuals will be in the population next year? -- <img src="figs/n1.png" width="63%" style="display: block; margin: auto;" /> `\(\LARGE n_{1,t+1} = m_1P_0n_{1,t}+m_2P_0n_{2,t} + m_3P_0n_{3,t}\)` --- ## Age-structured demography #### How many individuals will be in the population next year? <img src="figs/n2.png" width="63%" style="display: block; margin: auto;" /> `\(\LARGE n_{1,t+1} = m_1P_0n_{1,t}+m_2P_0n_{2,t} + m_3P_0n_{3,t}\)` `\(\LARGE n_{2,t+1} =P_1n_{1,t}\)` --- ## Age-structured demography #### How many individuals will be in the population next year? <img src="figs/n3.png" width="63%" style="display: block; margin: auto;" /> `\(\LARGE n_{1,t+1} = m_1P_0n_{1,t}+m_2P_0n_{2,t} + m_3P_0n_{3,t}\)` `\(\LARGE n_{2,t+1} =P_1n_{1,t}\)` `\(\LARGE n_{3,t+1} =P_2n_{2,t}\)` --- ## Leslie matrix model #### Rather than modeling the dynamics using the previous equations, we can use **matrix projection models** -- - defined by square matrix that summarizes the demography of age-specific life cycles -- - one column for each age class -- - developed by Sir Patrick H. Leslie for application to population biology -- - a matrix with age-specific birth and survival rates is called a **Leslie matrix** <br/> `$$\LARGE \mathbf A = \begin{bmatrix} m_1P_0 & m_2P_0 & m_3P_0\\ P_1 & 0 & 0\\ 0 &P_2 & 0 \end{bmatrix}$$` --- class: inverse, middle, center # Review of matrix algebra --- ## Review of matrix algebra #### Matrix addition - Matrices must be of the same dimension - Add corresponding elements of the matrices `$$\LARGE \mathbf A = \begin{bmatrix} 2 & 0 \\ 4 & 6 \end{bmatrix},\;\; \mathbf B = \begin{bmatrix} 1 & 5 \\ 2 & 7 \end{bmatrix}$$` <br/> -- `$$\LARGE \mathbf A + \mathbf B = \begin{bmatrix} 3 & 5 \\ 6 & 13 \end{bmatrix}$$` --- ## Review of matrix algebra #### Matrix subtraction - Matrices must be of the same dimension - Subtract corresponding elements of the matrices `$$\LARGE \mathbf A = \begin{bmatrix} 2 & 0 \\ 4 & 6 \end{bmatrix},\;\; \mathbf B = \begin{bmatrix} 1 & 5 \\ 2 & 7 \end{bmatrix}$$` -- `$$\LARGE \mathbf A - \mathbf B = \begin{bmatrix} 1 & -5 \\ 2 & -1 \end{bmatrix}$$` --- ## Review of matrix algebra #### Matrix multiplication - Dimensions are specified as **rows** by **columns** - Matrix multiplication does not require matrices to have the same dimensions - But they must have the same **inner** dimension + for example, a 3x3 matrix can be multiplied by a 3x1 matrix `$$\LARGE \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;3\times3\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;3\times1$$` `$$\LARGE \mathbf A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix},\;\; \mathbf B = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$` --- ## Review of matrix algebra #### Matrix multiplication - Dimensions are specified as **rows** by **columns** - Matrix multiplication does not require matrices to have the same dimensions - But they must have the same **inner** dimension + but a 3x3 matrix **cannnot** be multiplied by a 1x3 matrix `$$\LARGE \;\;\;\;\;\;\;\;\;\;\;\;3\times3\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;1\times3$$` `$$\LARGE \mathbf A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix},\;\; \mathbf B = \begin{bmatrix} x & y & z\\ \end{bmatrix}$$` --- ## Review of matrix algebra #### How does matrix multiplication work? `$$\LARGE \mathbf A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix},\;\; \mathbf B = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$` <br/> `$$\LARGE \mathbf A = \begin{bmatrix} a\times x + b\times y + c\times z\\ d\times x + e\times y + f\times z\\ g\times x + h\times y + i\times z \end{bmatrix}$$` --- ## Review of matrix algebra #### How does matrix multiplication work? `$$\LARGE \mathbf A = \begin{bmatrix} 1 & 0 & 5 \\ 0 & 4 & 3 \\ 2 & 6 & 0 \end{bmatrix},\;\; \mathbf B = \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}$$` <br/> <br/> `$$\LARGE \mathbf A = \begin{bmatrix} 1\times 3 + 0\times 2 + 5\times 1\\ 0\times 3 + 4\times 2 + 3\times 1\\ 2\times 3 + 6\times 2 + 1\times 1 \end{bmatrix}=\begin{bmatrix} 8 \\ 11 \\ 18 \end{bmatrix}$$` --- ## Review of matrix algebra #### Transpose of a matrix `$$\LARGE \mathbf B = \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix},\;\; \mathbf B^T = \begin{bmatrix} 3 & 2 & 1 \end{bmatrix}$$` <br/> <br/> `$$\LARGE \mathbf C = \begin{bmatrix} 3 & 2 & 1 \end{bmatrix},\;\; \mathbf C^T = \begin{bmatrix} 3\\ 2\\ 1 \end{bmatrix}$$` --- ## Review of matrix algebra #### Transpose of a matrix - is the following allowed? `$$\LARGE \mathbf A = \begin{bmatrix} 1 & 0 & 5 \\ 0 & 4 & 3 \\ 2 & 6 & 0 \end{bmatrix},\;\; \mathbf B = \begin{bmatrix} 3 & 2 & 1 \end{bmatrix}$$` <br/> <br/> `$$\Huge A \times B$$` --- ## Review of matrix algebra #### Transpose of a matrix - is the following allowed? `$$\LARGE \mathbf A = \begin{bmatrix} 1 & 0 & 5 \\ 0 & 4 & 3 \\ 2 & 6 & 0 \end{bmatrix},\;\; \mathbf B = \begin{bmatrix} 3 & 2 & 1 \end{bmatrix}$$` <br/> <br/> `$$\Huge A \times B^T$$` --- class: inverse, center, middle # Age-structured matrix models --- ## Age-structured matrix models #### How many individuals will be in the population next year? <img src="figs/lc_model.png" width="63%" style="display: block; margin: auto;" /> `\(\LARGE n_{1,t+1} = m_1P_0n_{1,t}+m_2P_0n_{2,t} + m_3P_0n_{3,t}\)` `\(\LARGE n_{2,t+1} =P_1n_{1,t}\)` `\(\LARGE n_{3,t+1} =P_2n_{2,t}\)` --- ## Age-structured matrix models #### How many individuals will be in the population next year? <img src="figs/lc_model.png" width="55%" style="display: block; margin: auto;" /> <img src="figs/matrix_11.png" width="45%" style="display: block; margin: auto;" /> --- ## Age-structured matrix models #### How many individuals will be in the population next year? <img src="figs/lc_model.png" width="55%" style="display: block; margin: auto;" /> <img src="figs/matrix_12.png" width="45%" style="display: block; margin: auto;" /> --- ## Age-structured matrix models #### How many individuals will be in the population next year? <img src="figs/lc_model.png" width="55%" style="display: block; margin: auto;" /> <img src="figs/matrix_13.png" width="45%" style="display: block; margin: auto;" /> --- ## Age-structured matrix models #### How many individuals will be in the population next year? <img src="figs/lc_model.png" width="55%" style="display: block; margin: auto;" /> <img src="figs/matrix_21.png" width="45%" style="display: block; margin: auto;" /> --- ## Age-structured matrix models #### How many individuals will be in the population next year? <img src="figs/lc_model.png" width="55%" style="display: block; margin: auto;" /> <img src="figs/matrix_32.png" width="45%" style="display: block; margin: auto;" /> --- ## Age-structured matrix models #### Rather than separately modeling fecundity and juvenile survival, Leslie matrices often include **recruitment** - `\(\Large F_x\)`: Recruitment (or sometimes **F**ertility) - `\(\Large F_x = m_xP_0\)` `$$\LARGE \mathbf A = \begin{bmatrix} F_1 & F_2 & F_3\\ P_1 & 0 & 0\\ 0 &P_2 & 0 \end{bmatrix}$$` --- ## Age-structured matrix models #### Recruitment doesn't have to be estimated from the life table #### Birds: - Clutch size - Nest survival - Chick survival - Juvenile survival `$$\LARGE F = cs \times ns \times chs \times js$$` `$$\LARGE \mathbf A = \begin{bmatrix} F_1 & F_2 & F_3\\ P_1 & 0 & 0\\ 0 &P_2 & 0 \end{bmatrix}$$` --- ## Age-structured matrix models #### Recruitment doesn't have to be estimated from the life table #### Plants: - Seed production - Seed survival - Germination rate - Seedling survival `$$\LARGE F = sp \times sds \times gr \times sls$$` `$$\LARGE \mathbf A = \begin{bmatrix} F_1 & F_2 & F_3\\ P_1 & 0 & 0\\ 0 &P_2 & 0 \end{bmatrix}$$` --- ## Projecting abundance #### The Leslie matrix can be used to project abundance `$$\LARGE \mathbf N_t = \begin{bmatrix} n_{1,t}\\ n_{2,t}\\ n_{3,t} \end{bmatrix}$$` <br/> <img src="figs/age_diagram.png" width="70%" style="display: block; margin: auto;" /> --- ## Projecting abundance #### The Leslie matrix can be used to project abundance -- - multiply the Leslie matrix `$$\Large \mathbf A = \begin{bmatrix} F_1 & F_2 & F_3\\ P_1 & 0 & 0\\ 0 &P_2 & 0 \end{bmatrix}$$` -- - by the abundance matrix `$$\Large \mathbf N_t = \begin{bmatrix} n_{1,t}\\ n_{2,t}\\ n_{3,t} \end{bmatrix}$$` using the rules of matrix multiplication --- ## Projecting abundance #### Population abundance is projected through time using matrix multiplication `$$\Large \mathbf N_{t+1} = \mathbf A \times \mathbf N_t$$` `$$\Large \begin{bmatrix} n_{1,t+1}\\ n_{2,t+1}\\ n_{3,t+1} \end{bmatrix}\Large = \begin{bmatrix} F_1 & F_2 & F_3\\ P_1 & 0 & 0\\ 0 &P_2 & 0 \end{bmatrix} \times \begin{bmatrix} n_{1,t}\\ n_{2,t}\\ n_{3,t} \end{bmatrix}$$` <br/> Notice that the inner dimensions match --- ## Projecting abundance #### Population abundance is projected through time using matrix multiplication <img src="figs/matrix_n1.png" width="80%" style="display: block; margin: auto;" /> --- ## Projecting abundance #### Population abundance is projected through time using matrix multiplication <img src="figs/matrix_n2.png" width="80%" style="display: block; margin: auto;" /> --- ## Projecting abundance #### Population abundance is projected through time using matrix multiplication <img src="figs/matrix_n3.png" width="80%" style="display: block; margin: auto;" />