class: center, middle, inverse, title-slide # Lecture 12 ## Reproductive value, sensitivity, and elasticity ###
WILD3810 (Spring 2021) --- ## Readings > Mills 103-109 --- ## Management questions #### What is the short-term growth of this population given the current age/stage structure? #### What is the long-term growth of this population given the current vital rates? #### Which age/stage contributes most to future population growth? #### Which vital rates have the biggest effect on future growth? #### How would future population dynamics change if different vital rates were changed? --- ## Common teasel example <br/> <img src="Lecture12_files/figure-html/unnamed-chunk-2-1.png" width="576" style="display: block; margin: auto;" /> --- ## How does initial stage-distribution effect growth? <br/> <img src="Lecture12_files/figure-html/unnamed-chunk-4-1.png" width="468" style="display: block; margin: auto;" /> -- #### All populations reach the same stable stage distribution and have the same `\(\Large \lambda_{SSD}\)` -- - But they do not have the same `\(\Large N_T\)` --- class: center, middle, inverse # Reproductive value --- ## Reproductive value > the number of offspring that an individual is expected to contribute to a population over its remaining life span (after adjusting for the growth rate of the population) -- #### Intuitive, but complex to compute -- #### Factors that influence reproductive value: -- - Expected future reproductive output <br/> -- - Survival probability <br/> -- - Age at maturity <br/> -- - Population growth rate + if a population is growing, future offspring will be smaller contribution to `\(N\)` + if a population is shrinking, future offspringwill be larger contribution to `\(N\)` --- ## Reproductive value #### Teasel example - Dormant seeds, year 1: `\(\Large 1.00\)` - Dormant seeds, year 2: `\(\Large 0.04\)` - Small rosette: `\(\Large 9.19\)` - Medium rosette: `\(\Large 152.4\)` - Large rosette: `\(\Large 972.1\)` - Flowering plant: `\(\Large 2,633\)` --- ## Reproductive value .left-column[ <img src="figs/lobiopa.jpg" width="100%" style="display: block; margin: auto;" /> ] .right-column[ <img src="figs/lobiopa_rv.PNG" width="100%" style="display: block; margin: auto;" /> ] ??? Image courtesy of Scott Justis Figure from Greco et al. (2017) *Life history traits and life table analysis of Lobiopa insularis (Coleoptera: Nitidulidae) fed on strawberry* PlosOne --- ## Reproductive value .left-column[ <img src="https://upload.wikimedia.org/wikipedia/commons/e/ea/Forest_elephant.jpg" width="100%" style="display: block; margin: auto;" /> ] .right-column[ <img src="figs/elephant_rv.PNG" width="100%" style="display: block; margin: auto;" /> ] ??? Image courtesy of dsg-photo.com, via Wikicommons Figure from Turkalo et al. (2018) *Demography of a forest elephant population* PlosOne --- class: center, middle, inverse # Population inertia --- ## Population inertia > difference between the long-term population size of a population that experiences transient dynamics and the long-term population size of a population that grows at the SSD <img src="Lecture12_files/figure-html/unnamed-chunk-10-1.png" width="576" style="display: block; margin: auto;" /> --- ## Population inertia #### Grey wolf population matrix `$$\mathbf A = \begin{bmatrix} 0 & 0.44 & 0.62 & 0.62 & 0.62 & 0.62 & 0.62 & 0.62 & 0.22\\ 0.69 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0.77 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0.77 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0.77 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0.77 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0.77 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 0.77 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0.55 & 0.37 \end{bmatrix}$$` -- `$$\large \lambda_{SAD} = 1.097$$` -- #### Reproductive values: `$$\large [1.00, 1.59, 1.69, 1.61, 1.49, 1.31, 1.07, 0.72, 0.30]$$` ??? Adapted from Carroll et al. (2003) *Cons Biol* --- ## Population inertia #### What is the projected growth if reintroduced population starts at SAD? .left-column[ #### SAD: `$$\large \begin{bmatrix} 0.33\\ 0.21\\ 0.15\\ 0.10\\ 0.07\\ 0.05\\ 0.04\\ 0.03\\ 0.02 \end{bmatrix}$$` ] .right-column[ <br/> <br/> <img src="Lecture12_files/figure-html/unnamed-chunk-11-1.png" width="468" style="display: block; margin: auto auto auto 0;" /> ] --- ## Population inertia #### What is the projected growth if reintroduced population starts with all 9 year olds? .left-column[ `$$\large \begin{bmatrix} 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 1 \end{bmatrix}$$` ] .right-column[ <br/> <br/> <img src="Lecture12_files/figure-html/unnamed-chunk-12-1.png" width="468" style="display: block; margin: auto auto auto 0;" /> ] --- ## Population inertia #### What is the projected growth if reintroduced population starts with all 3 year olds? .left-column[ `$$\large \begin{bmatrix} 0\\ 0\\ 1\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0 \end{bmatrix}$$` ] .right-column[ <br/> <br/> <img src="Lecture12_files/figure-html/unnamed-chunk-13-1.png" width="468" style="display: block; margin: auto auto auto 0;" /> ] --- ## Population inertia and reproductive value in practice #### What age/stage distribution will lead to largest `\(\large N\)` for introduced population? #### What age/stage should be the target for reducing invasive species? #### What age/stage distribution can be harvested to maintain stable population of game species? <img src="https://upload.wikimedia.org/wikipedia/commons/2/21/Mule_Deer_Herd_%2815382464835%29.jpg" width="50%" style="display: block; margin: auto;" /> ??? Image courtesy of USFWS Mountain-Prairie via WikiCommons --- class: center, middle, inverse # Sensitivity and elasticity --- ## Sensitivity #### Remember that `\(\Large \lambda\)` is determined by the birth and death rates of a population `$$\Large \lambda = 1 + b - d$$` -- #### As managers, we might want to increase or decrease `\(\Large \lambda\)` of certain species by manipulating age-specific `\(\large b\)` and `\(\large d\)` rates #### But `\(\lambda\)` does not respond equally to all vital rates - in some cases, a small change in adult survival may result in a large change in `\(\large \lambda\)` - in other cases, a small change in fecundity or juvenile survival may result in a large change in `\(\large \lambda\)` #### Which vital rates should we focus our management efforts on? --- ## Sensitivity #### Sensitivity > the change in `\(\large \lambda\)` caused by a small change in a vital rate `$$\Large s_{i,j} = \frac{\delta \lambda}{\delta a_{i,j}} = \frac{v_iw_j}{\sum_{k=1}v_kw_k}$$` where `\(v_i\)` and `\(w_j\)` are the reproductive value and stable stage distribution of stage `\(i\)` -- - large reproductive values or large stable stable distribution lead to large sensitivity --- ## Sensitivity .pull-left[ <img src="https://upload.wikimedia.org/wikipedia/commons/b/be/Grasfrosch-Rana-temporaria-side.jpg" width="70%" style="display: block; margin: auto auto auto 0;" /> **Common frog (*Rana temporaria*)** 3 stages: - pre-juvenile (egg - tadpole) - juvenile (tadpole - 2 years) - adult (> 2 years) ] .pull-right[ <br/> <br/> <br/> `$$\Large \mathbf A = \begin{bmatrix} 0 & 52 & 279.5\\ 0.019 & 0.25 & 0\\ 0 & 0.08 & 0.43\\ \end{bmatrix}$$` <br/> `$$\LARGE \lambda = 1.338$$` ] ??? Image courtesy of H. Krisp, via Wikicommons --- ## Estimating sensitivity #### By hand `$$\Large a_{2,1} = 0.019, \lambda = 1.338$$` -- `$$\Large a_{2,1}' = 0.029, \lambda = 1.571$$` `$$\Large s_{2,1} = \frac{1.571 - 1.338}{0.01} = 23.3$$` -- #### Analytically `popbio::sensitivity(A)[2,1] = 26.05` --- ## Estimating sensitivity #### By hand `$$\Large a_{1,2} = 52, \lambda = 1.338$$` -- `$$\Large a_{1,2}' = 52.01, \lambda = 1.338$$` `$$\Large s_{1,2} = \frac{1.338 - 1.338}{0.01} = 0.00$$` -- #### Analytically `popbio::sensitivity(A)[1,2] = 0.006` --- ## Elasticity #### Does it make sense to compare a change of 0.01 in a survival value to a change of 0.01 in fecundity? - 0.01 is about 52% of 0.019 - 0.01 is about 0.02% of 52 -- #### Elasticity > the change in `\(\large \lambda\)` caused by a small *proportional* change in a vital rate `$$\Large e_{i,j} = s_{i,j} \bigg[\frac{a_{i,j}}{\lambda}\bigg]$$` - Elasticity scales sensitivity to account for the magnitude of the vital rate --- ## Elasticity #### Common frog example ##### By hand `$$\Large e_{2,1} = 26.05 \bigg[\frac{0.019}{1.338}\bigg] = 0.3699$$` `$$\Large e_{1,2} = 0.006 \bigg[\frac{52}{1.338}\bigg] = 0.2332$$` -- ##### Analytically `popbio::elasticity(A)[2,1] = 0.3699` `popbio::elasticity(A)[1,2] = 0.251` --- ## Life history variation #### Organisms have limited resources to investment between growth, reproduction, and survivorship -- #### Evolution selects for different combinations of *life history traits* > Demographic traits that influence fitness (i.e., `\(\lambda\)`) - size at birth - growth pattern - age at maturity - fecundity schedule - mortality schedule - length of life -- #### Trade-offs between traits directly related to sensitivity/elasticity -- #### We'll explore variation in life history traits during the next lecture