class: center, middle, inverse, title-slide # Lecture 13 ## Life history variation ###
WILD3810 (Spring 2021) --- ## Life history variation #### Organisms have limited resources to investment between growth, reproduction, and survivorship - **Trade offs** -- #### Evolution selects for different combinations of *life history traits* > Demographic traits that influence fitness (i.e., `\(\lambda\)`) - size at birth - growth pattern - age at maturity - fecundity schedule - mortality schedule - length of life -- #### Selection favors life history combinations that maximize the per capita growth rate --- ## Life history variation #### Which species has higher fecundity? #### Which species has a higher age at first reproduction? #### Which species lives longer? .pull-left[ <img src="https://upload.wikimedia.org/wikipedia/commons/e/ed/BRACHYLAGUS_IDAHOENSIS.jpg" width="100%" style="display: block; margin: auto;" /> ] .pull-right[ <img src="https://upload.wikimedia.org/wikipedia/commons/5/5a/Black-bear_with_her_cub.jpg" width="100%" style="display: block; margin: auto;" /> ] --- ## Life history variation #### Which species has higher fecundity? #### Which species has a higher age at first reproduction? #### Which species lives longer? .pull-left[ <img src="https://upload.wikimedia.org/wikipedia/commons/1/10/Green-winged_teal_FWS_18507.jpg" width="100%" style="display: block; margin: auto;" /> ] .pull-right[ <img src="https://upload.wikimedia.org/wikipedia/commons/0/0b/Northern_Pintails_%28Male_%26_Female%29_I_IMG_0911.jpg" width="100%" style="display: block; margin: auto;" /> ] --- ## Life history variation #### Which species has higher fecundity? #### Which species has a higher age at first reproduction? #### Which species lives longer? .pull-left[ <img src="figs/cutthroat.png" width="100%" style="display: block; margin: auto;" /> ] .pull-right[ <img src="figs/lake_trout.png" width="100%" style="display: block; margin: auto;" /> ] --- class: inverse, middle, center # Life history trade offs --- ## Life history trade offs #### Current reproduction vs. future reproduction .pull-left[ #### Semelparity <img src="figs/Reproductive_effort_semelparous.jpg" width="100%" style="display: block; margin: auto;" /> ] .pull-right[ #### Iteroparity <img src="figs/Reproductive_effort_iteroparous.svg.png" width="100%" style="display: block; margin: auto auto auto 0;" /> ] --- ## Life history trade offs #### Offspring quantity vs. quality (Lack 1954,1968) .pull-left[ <img src="figs/clutch_size.png" width="100%" style="display: block; margin: auto;" /> ] .pull-right[ <img src="figs/The-Lack-clutch.png" width="100%" style="display: block; margin: auto;" /> ] --- ## r-K selection #### Arises directly from logistic population growth model (MacArthur & Wilson 1967; Pianka 1970) - `\(\large r_0\)`: density-independent rate of population growth - `\(\large K\)`: carrying capacity -- #### Evolution of life history strategies leads to: **r-selected species** - selection for ability to colonize and reproduce rapidly - good colonizers, poor competitors -- **K-selected species** - selection for ability to contribute to `\(N\)` when the population is near `\(K\)` - good competitors, poor colonizers --- ## Life history trade offs #### Predictions (based on Pianka 1970) <table class="table table-striped table-hover table-condensed table-responsive" style="font-size: 16px; margin-left: auto; margin-right: auto;"> <thead> <tr> <th style="text-align:center;"> </th> <th style="text-align:center;"> r-selection </th> <th style="text-align:center;"> K-selection </th> </tr> </thead> <tbody> <tr> <td style="text-align:center;"> Mortality </td> <td style="text-align:center;"> Variable & unpredictable </td> <td style="text-align:center;"> Constant & predictable </td> </tr> <tr> <td style="text-align:center;"> Population size </td> <td style="text-align:center;"> Variable & below K </td> <td style="text-align:center;"> Constant & close to K </td> </tr> <tr> <td style="text-align:center;"> Competition </td> <td style="text-align:center;"> Variable & weak </td> <td style="text-align:center;"> Strong </td> </tr> <tr> <td style="text-align:center;"> Selection favors </td> <td style="text-align:center;"> Rapid development, early reproduction, small body size, semelparity </td> <td style="text-align:center;"> Slow development, delayed reproduction, large body size, iteroparity </td> </tr> <tr> <td style="text-align:center;"> Length of life </td> <td style="text-align:center;"> Short </td> <td style="text-align:center;"> Long </td> </tr> <tr> <td style="text-align:center;"> Leads to... </td> <td style="text-align:center;"> High productivity </td> <td style="text-align:center;"> High efficiency </td> </tr> </tbody> </table> --- ## r-K selection #### The predictions of r-K selection stimulated vast amounts of research on life history evolution -- #### But... - Many species don't fall neatly into these categories (combinations of r-selected traits and K-selected traits) - Predictions are vague enough that many different results are "consistent" with them - Carrying-capacity is not a demographic parameter so traits that influence resource use do not directly translate to a specific K --- class: inverse, middle, center # Fast-slow continuum --- ## Fast-slow continuum #### More recent studies view life history variation as existing on a continuum: <table class="table table-striped table-hover table-condensed table-responsive" style="font-size: 16px; margin-left: auto; margin-right: auto;"> <thead> <tr> <th style="text-align:center;"> Slow species </th> <th style="text-align:center;"> Fast species </th> </tr> </thead> <tbody> <tr> <td style="text-align:center;"> Low reproductive effort </td> <td style="text-align:center;"> High reproduction </td> </tr> <tr> <td style="text-align:center;"> Delayed maturity </td> <td style="text-align:center;"> Early maturity </td> </tr> <tr> <td style="text-align:center;"> High survival </td> <td style="text-align:center;"> Low survival </td> </tr> <tr> <td style="text-align:center;"> Long generation time </td> <td style="text-align:center;"> Short generation time </td> </tr> </tbody> </table> --- ## Fast-slow continuum in birds .pull-left[ <img src="https://upload.wikimedia.org/wikipedia/commons/c/c4/American_Redstart_%2836640045423%29.jpg" width="80%" style="display: block; margin: auto;" /> <img src="figs/chandler-robbins.jpg" width="80%" style="display: block; margin: auto;" /> ] .pull-right[ <img src="figs/fast_slow_birds.png" width="100%" style="display: block; margin: auto;" /> ] --- ## Fast-slow continuum in mammals .pull-left[ <img src="https://upload.wikimedia.org/wikipedia/commons/7/76/TiptonKangarooRat.jpg" width="80%" style="display: block; margin: auto;" /> <img src="https://upload.wikimedia.org/wikipedia/commons/e/ea/Forest_elephant.jpg" width="80%" style="display: block; margin: auto;" /> ] .pull-right[ ##### Age at 1st reproduction vs. adult body mass <img src="figs/mammal1.png" width="70%" style="display: block; margin: auto;" /> ##### Adult lifespan vs. adult body mass <img src="figs/mammal2.png" width="70%" style="display: block; margin: auto;" /> ] --- ## Fast-slow continuum and elasticities #### Is the fast-slow continuum related to which vital rates influence `\(\large \lambda\)`? - Explicit connection between evolved pattern of life history vital rates and impact on population dynamics - Elasticities are useful to guide conservation & management --- ## Fast-slow continuum and elasticities <img src="figs/elasticities_birds.png" width="70%" style="display: block; margin: auto;" /> --- ## Fast-slow continuum and elasticities <img src="figs/elasticities_mammals.png" width="30%" style="display: block; margin: auto;" /> --- ## Fast-slow continuum and elasticities <img src="figs/elasticities_plants.png" width="30%" style="display: block; margin: auto;" /> --- ## Fast-slow continuum and management #### Distinctive demographic elasticity patterns across bird, mammal, and plant life histories - Elasticities can be reasonably assessed from limited knowledge of an organisms life history (e.g., clutch size, age at maturity, etc.) - Managers can assess whether to focus on managing survival (e.g., through harvest or wintering habitat) or reproduction (e.g., spring and summer habitat) - Very important for the conservation of rare species + Detailed demographic studies not possible