class: center, middle, inverse, title-slide # Lecture 7 ## Life tables ###
WILD3810 (Spring 2021) --- ## Assumptions of the density-independent models #### Remember from the lecture 3 that our simple models of population growth were based on the following assumptions: -- 1) Population closed to immigration and emigration <br/> -- 2) Model pertains to only the limiting sex, usually females <br/> -- 3) Birth and death rates are independent of an individual’s age or biological stage <br/> -- 4) Birth and death rates are constant --- ## Assumptions of the density-independent models #### In lectures 4 and 5, we learned about ways to model dynamics that do not meet assumption 4: 1) Population closed to immigration and emigration <br/> 2) Model pertains to only the limiting sex, usually females <br/> 3) Birth and death rates are independent of an individual’s age or biological stage <br/> **4) Birth and death rates are constant** ??? In lecture 4, we learned about why birth and death rates might change as a function of abundance In lecture 5, we learned about ways that birth and death rates might vary stochastically --- ## Assumptions of the density-independent models #### Over the coming weeks, we will learn about why and how to relax assumption 3: 1) Population closed to immigration and emigration <br/> 2) Model pertains to only the limiting sex, usually females <br/> **3) Birth and death rates are independent of an individual’s age or biological stage** <br/> 4) Birth and death rates are constant --- class: inverse, center, middle # Structured populations --- ## Age-structured populations #### Survival and birth rates often vary with age .left-column[ <img src="https://upload.wikimedia.org/wikipedia/commons/d/d2/Anser_caerulescens_CT4.jpg" width="100%" style="display: block; margin: auto;" /> ] .right-column[ <img src="figs/goose_survivorship.png" width="80%" style="display: block; margin: auto;" /> ] ??? Image courtesy of Cephas, from Wikimedia Commons Figure from Rockwell et al. (1985) *Evolution* --- ## Stage-structured populations #### In some cases, age is not a relevant predictor of survival and birth rates -- #### Instead, survival and birth rates vary with **stage** -- - life cycle stage .pull-left[ <img src="figs/lifecycle_diagram.jpg" width="75%" style="display: block; margin: auto;" /> ] .pull-right[ <img src="figs/lifecycle.gif" width="75%" style="display: block; margin: auto;" /> ] --- ## Stage-structured populations #### In some cases, age is not a relevant predictor of survival and birth rates #### Instead, survival and birth rates vary with **stage** - life cycle stage - size .left-column[ <img src="https://upload.wikimedia.org/wikipedia/commons/a/af/Gasterosteus_aculeatus_t%C3%BCsk%C3%A9s_pik%C3%B3.jpg" width="100%" style="display: block; margin: auto;" /> ] .right-column[ <img src="figs/stickleback_fecundity.png" width="60%" style="display: block; margin: auto;" /> ] ??? Image courtesy of Kókay Szabolcs, via Wikimedia Commons Figure from Moser et al. (2012) --- class: inverse, center, middle # Age-structured populations --- ## Age-structured populations #### **Life tables** - earliest accounting tool for calculating age-specific survival and mortality -- #### Applications to: - Human demography - Insurance industry (actuarial sciences) - Health professions -- [Pearl and Parker (1921)](https://www.journals.uchicago.edu/doi/pdfplus/10.1086/279836) were the first to calculate a non-human life table - *Drosophila melanogaster* (a fruit fly) - Since used in ecology, evolution, and natural resource management --- ## Life tables #### Cohort life table - follow group of individuals born within short period (a **cohort**) until each individual's death -- - develop life table for groups of individuals with similar traits (e.g., one for males, one for females) -- - **longitudinal** study design <img src="Lecture7_files/figure-html/long_cohort-1.png" width="432" style="display: block; margin: auto;" /> --- ## Life tables - `\(\Large x\)`: age of individuals - `\(\Large N_x\)`: number of individuals observed alive at age `\(\Large x\)` (sometimes called `\(\Large S_x\)`) <br/> <table class="table table-striped table-hover table-condensed table-responsive" style="margin-left: auto; margin-right: auto;"> <thead> <tr> <th style="text-align:center;"> \(x\) </th> <th style="text-align:center;"> \(N_x\) </th> <th style="text-align:center;"> </th> <th style="text-align:center;"> </th> <th style="text-align:center;"> </th> <th style="text-align:center;"> </th> </tr> </thead> <tbody> <tr> <td style="text-align:center;"> 0 </td> <td style="text-align:center;"> 100 </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> </tr> <tr> <td style="text-align:center;"> 1 </td> <td style="text-align:center;"> 75 </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> </tr> <tr> <td style="text-align:center;"> 2 </td> <td style="text-align:center;"> 50 </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> </tr> <tr> <td style="text-align:center;"> 3 </td> <td style="text-align:center;"> 40 </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> </tr> <tr> <td style="text-align:center;"> 4 </td> <td style="text-align:center;"> 0 </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> </tr> </tbody> </table> ??? `\(S_x\)` stands for number of *survivors* at age `\(x\)` --- ## Life tables - `\(\Large l_x\)`: Probability of surviving to age `\(\Large x\)` + Can also be interpreted as the proportion of individuals still alive at age `\(x\)` - `\(\Large l_x = N_x/N_0\)` <br/> <table class="table table-striped table-hover table-condensed table-responsive" style="margin-left: auto; margin-right: auto;"> <thead> <tr> <th style="text-align:center;"> \(x\) </th> <th style="text-align:center;"> \(N_x\) </th> <th style="text-align:center;"> \(l_x\) </th> <th style="text-align:center;"> </th> <th style="text-align:center;"> </th> <th style="text-align:center;"> </th> </tr> </thead> <tbody> <tr> <td style="text-align:center;"> 0 </td> <td style="text-align:center;"> 100 </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> </tr> <tr> <td style="text-align:center;"> 1 </td> <td style="text-align:center;"> 75 </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> </tr> <tr> <td style="text-align:center;"> 2 </td> <td style="text-align:center;"> 50 </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> </tr> <tr> <td style="text-align:center;"> 3 </td> <td style="text-align:center;"> 40 </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> </tr> <tr> <td style="text-align:center;"> 4 </td> <td style="text-align:center;"> 0 </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> </tr> </tbody> </table> --- ## Life tables - `\(\Large l_x\)`: Probability of surviving to age `\(\Large x\)` - `\(\Large l_x = N_x/N_0\)` <br/> <table class="table table-striped table-hover table-condensed table-responsive" style="margin-left: auto; margin-right: auto;"> <thead> <tr> <th style="text-align:center;"> \(x\) </th> <th style="text-align:center;"> \(N_x\) </th> <th style="text-align:center;"> \(l_x\) </th> <th style="text-align:center;"> </th> <th style="text-align:center;"> </th> <th style="text-align:center;"> </th> </tr> </thead> <tbody> <tr> <td style="text-align:center;"> 0 </td> <td style="text-align:center;"> 100 </td> <td style="text-align:center;"> 1.00 </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> </tr> <tr> <td style="text-align:center;"> 1 </td> <td style="text-align:center;"> 75 </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> </tr> <tr> <td style="text-align:center;"> 2 </td> <td style="text-align:center;"> 50 </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> </tr> <tr> <td style="text-align:center;"> 3 </td> <td style="text-align:center;"> 40 </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> </tr> <tr> <td style="text-align:center;"> 4 </td> <td style="text-align:center;"> 0 </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> </tr> </tbody> </table> --- ## Life tables - `\(\Large l_x\)`: Probability of surviving to age `\(\Large x\)` - `\(\Large l_x = N_x/N_0\)` <br/> <table class="table table-striped table-hover table-condensed table-responsive" style="margin-left: auto; margin-right: auto;"> <thead> <tr> <th style="text-align:center;"> \(x\) </th> <th style="text-align:center;"> \(N_x\) </th> <th style="text-align:center;"> \(l_x\) </th> <th style="text-align:center;"> </th> <th style="text-align:center;"> </th> <th style="text-align:center;"> </th> </tr> </thead> <tbody> <tr> <td style="text-align:center;"> 0 </td> <td style="text-align:center;"> 100 </td> <td style="text-align:center;"> 1.00 </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> </tr> <tr> <td style="text-align:center;"> 1 </td> <td style="text-align:center;"> 75 </td> <td style="text-align:center;"> 0.75 </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> </tr> <tr> <td style="text-align:center;"> 2 </td> <td style="text-align:center;"> 50 </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> </tr> <tr> <td style="text-align:center;"> 3 </td> <td style="text-align:center;"> 40 </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> </tr> <tr> <td style="text-align:center;"> 4 </td> <td style="text-align:center;"> 0 </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> </tr> </tbody> </table> --- ## Life tables - `\(\Large l_x\)`: Probability of surviving to age `\(\Large x\)` - `\(\Large l_x = N_x/N_0\)` <br/> <table class="table table-striped table-hover table-condensed table-responsive" style="margin-left: auto; margin-right: auto;"> <thead> <tr> <th style="text-align:center;"> \(x\) </th> <th style="text-align:center;"> \(N_x\) </th> <th style="text-align:center;"> \(l_x\) </th> <th style="text-align:center;"> </th> <th style="text-align:center;"> </th> <th style="text-align:center;"> </th> </tr> </thead> <tbody> <tr> <td style="text-align:center;"> 0 </td> <td style="text-align:center;"> 100 </td> <td style="text-align:center;"> 1.00 </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> </tr> <tr> <td style="text-align:center;"> 1 </td> <td style="text-align:center;"> 75 </td> <td style="text-align:center;"> 0.75 </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> </tr> <tr> <td style="text-align:center;"> 2 </td> <td style="text-align:center;"> 50 </td> <td style="text-align:center;"> 0.50 </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> </tr> <tr> <td style="text-align:center;"> 3 </td> <td style="text-align:center;"> 40 </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> </tr> <tr> <td style="text-align:center;"> 4 </td> <td style="text-align:center;"> 0 </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> </tr> </tbody> </table> --- ## Life tables - `\(\Large l_x\)`: Probability of surviving to age `\(\Large x\)` - `\(\Large l_x = N_x/N_0\)` <br/> <table class="table table-striped table-hover table-condensed table-responsive" style="margin-left: auto; margin-right: auto;"> <thead> <tr> <th style="text-align:center;"> \(x\) </th> <th style="text-align:center;"> \(N_x\) </th> <th style="text-align:center;"> \(l_x\) </th> <th style="text-align:center;"> </th> <th style="text-align:center;"> </th> <th style="text-align:center;"> </th> </tr> </thead> <tbody> <tr> <td style="text-align:center;"> 0 </td> <td style="text-align:center;"> 100 </td> <td style="text-align:center;"> 1.00 </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> </tr> <tr> <td style="text-align:center;"> 1 </td> <td style="text-align:center;"> 75 </td> <td style="text-align:center;"> 0.75 </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> </tr> <tr> <td style="text-align:center;"> 2 </td> <td style="text-align:center;"> 50 </td> <td style="text-align:center;"> 0.50 </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> </tr> <tr> <td style="text-align:center;"> 3 </td> <td style="text-align:center;"> 40 </td> <td style="text-align:center;"> 0.40 </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> </tr> <tr> <td style="text-align:center;"> 4 </td> <td style="text-align:center;"> 0 </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> </tr> </tbody> </table> --- ## Life tables - `\(\Large l_x\)`: Probability of surviving to age `\(\Large x\)` - `\(\Large l_x = N_x/N_0\)` <br/> <table class="table table-striped table-hover table-condensed table-responsive" style="margin-left: auto; margin-right: auto;"> <thead> <tr> <th style="text-align:center;"> \(x\) </th> <th style="text-align:center;"> \(N_x\) </th> <th style="text-align:center;"> \(l_x\) </th> <th style="text-align:center;"> </th> <th style="text-align:center;"> </th> <th style="text-align:center;"> </th> </tr> </thead> <tbody> <tr> <td style="text-align:center;"> 0 </td> <td style="text-align:center;"> 100 </td> <td style="text-align:center;"> 1.00 </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> </tr> <tr> <td style="text-align:center;"> 1 </td> <td style="text-align:center;"> 75 </td> <td style="text-align:center;"> 0.75 </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> </tr> <tr> <td style="text-align:center;"> 2 </td> <td style="text-align:center;"> 50 </td> <td style="text-align:center;"> 0.50 </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> </tr> <tr> <td style="text-align:center;"> 3 </td> <td style="text-align:center;"> 40 </td> <td style="text-align:center;"> 0.40 </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> </tr> <tr> <td style="text-align:center;"> 4 </td> <td style="text-align:center;"> 0 </td> <td style="text-align:center;"> 0.00 </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> </tr> </tbody> </table> --- exclude: true ## Life tables .left-column[ <img src="https://upload.wikimedia.org/wikipedia/commons/f/f6/Phlox_drummondii_-_Archer_FL_02.jpg" width="100%" style="display: block; margin: auto;" /> ] .right-column[ <img src="figs/phlox_lt.png" width="80%" style="display: block; margin: auto;" /> ] ??? Image courtesy of Ebyabe, from Wikimedia Commons from Leverich & Leven (1979) *American Naturalist* --- ## Life tables .left-column[ <img src="https://upload.wikimedia.org/wikipedia/commons/f/f6/Phlox_drummondii_-_Archer_FL_02.jpg" width="100%" style="display: block; margin: auto;" /> ] .right-column[ <img src="figs/phlox_survivorship.png" width="60%" style="display: block; margin: auto;" /> ] ??? Image courtesy of Ebyabe, from Wikimedia Commons from Leverich & Leven (1979) *American Naturalist* --- ## Life tables - `\(\Large P_x\)`: Probability of surviving **from** age `\(x\)` **to** the next age (of those alive at age `\(x\)`) - `\(\Large P_x = l_{x+1}/l_x\)` <br/> <table class="table table-striped table-hover table-condensed table-responsive" style="margin-left: auto; margin-right: auto;"> <thead> <tr> <th style="text-align:center;"> \(x\) </th> <th style="text-align:center;"> \(N_x\) </th> <th style="text-align:center;"> \(l_x\) </th> <th style="text-align:center;"> \(P_x\) </th> <th style="text-align:center;"> </th> <th style="text-align:center;"> </th> </tr> </thead> <tbody> <tr> <td style="text-align:center;"> 0 </td> <td style="text-align:center;"> 100 </td> <td style="text-align:center;"> 1.00 </td> <td style="text-align:center;"> 0.75 </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> </tr> <tr> <td style="text-align:center;"> 1 </td> <td style="text-align:center;"> 75 </td> <td style="text-align:center;"> 0.75 </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> </tr> <tr> <td style="text-align:center;"> 2 </td> <td style="text-align:center;"> 50 </td> <td style="text-align:center;"> 0.50 </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> </tr> <tr> <td style="text-align:center;"> 3 </td> <td style="text-align:center;"> 40 </td> <td style="text-align:center;"> 0.40 </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> </tr> <tr> <td style="text-align:center;"> 4 </td> <td style="text-align:center;"> 0 </td> <td style="text-align:center;"> 0.00 </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> </tr> </tbody> </table> --- ## Life tables - `\(\Large P_x\)`: Probability of surviving **from** age `\(x\)` **to** the next age (of those alive at age `\(x\)`) - `\(\Large P_x = l_{x+1}/l_x\)` <br/> <table class="table table-striped table-hover table-condensed table-responsive" style="margin-left: auto; margin-right: auto;"> <thead> <tr> <th style="text-align:center;"> \(x\) </th> <th style="text-align:center;"> \(N_x\) </th> <th style="text-align:center;"> \(l_x\) </th> <th style="text-align:center;"> \(P_x\) </th> <th style="text-align:center;"> </th> <th style="text-align:center;"> </th> </tr> </thead> <tbody> <tr> <td style="text-align:center;"> 0 </td> <td style="text-align:center;"> 100 </td> <td style="text-align:center;"> 1.00 </td> <td style="text-align:center;"> 0.75 </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> </tr> <tr> <td style="text-align:center;"> 1 </td> <td style="text-align:center;"> 75 </td> <td style="text-align:center;"> 0.75 </td> <td style="text-align:center;"> 0.667 </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> </tr> <tr> <td style="text-align:center;"> 2 </td> <td style="text-align:center;"> 50 </td> <td style="text-align:center;"> 0.50 </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> </tr> <tr> <td style="text-align:center;"> 3 </td> <td style="text-align:center;"> 40 </td> <td style="text-align:center;"> 0.40 </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> </tr> <tr> <td style="text-align:center;"> 4 </td> <td style="text-align:center;"> 0 </td> <td style="text-align:center;"> 0.00 </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> </tr> </tbody> </table> --- ## Life tables - `\(\Large P_x\)`: Probability of surviving **from** age `\(x\)` **to** the next age (of those alive at age `\(x\)`) - `\(\Large P_x = l_{x+1}/l_x\)` <br/> <table class="table table-striped table-hover table-condensed table-responsive" style="margin-left: auto; margin-right: auto;"> <thead> <tr> <th style="text-align:center;"> \(x\) </th> <th style="text-align:center;"> \(N_x\) </th> <th style="text-align:center;"> \(l_x\) </th> <th style="text-align:center;"> \(P_x\) </th> <th style="text-align:center;"> </th> <th style="text-align:center;"> </th> </tr> </thead> <tbody> <tr> <td style="text-align:center;"> 0 </td> <td style="text-align:center;"> 100 </td> <td style="text-align:center;"> 1.00 </td> <td style="text-align:center;"> 0.75 </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> </tr> <tr> <td style="text-align:center;"> 1 </td> <td style="text-align:center;"> 75 </td> <td style="text-align:center;"> 0.75 </td> <td style="text-align:center;"> 0.667 </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> </tr> <tr> <td style="text-align:center;"> 2 </td> <td style="text-align:center;"> 50 </td> <td style="text-align:center;"> 0.50 </td> <td style="text-align:center;"> 0.8 </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> </tr> <tr> <td style="text-align:center;"> 3 </td> <td style="text-align:center;"> 40 </td> <td style="text-align:center;"> 0.40 </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> </tr> <tr> <td style="text-align:center;"> 4 </td> <td style="text-align:center;"> 0 </td> <td style="text-align:center;"> 0.00 </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> </tr> </tbody> </table> --- ## Life tables - `\(\Large P_x\)`: Probability of surviving **from** age `\(x\)` **to** the next age (of those alive at age `\(x\)`) - `\(\Large P_x = l_{x+1}/l_x\)` <br/> <table class="table table-striped table-hover table-condensed table-responsive" style="margin-left: auto; margin-right: auto;"> <thead> <tr> <th style="text-align:center;"> \(x\) </th> <th style="text-align:center;"> \(N_x\) </th> <th style="text-align:center;"> \(l_x\) </th> <th style="text-align:center;"> \(P_x\) </th> <th style="text-align:center;"> </th> <th style="text-align:center;"> </th> </tr> </thead> <tbody> <tr> <td style="text-align:center;"> 0 </td> <td style="text-align:center;"> 100 </td> <td style="text-align:center;"> 1.00 </td> <td style="text-align:center;"> 0.75 </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> </tr> <tr> <td style="text-align:center;"> 1 </td> <td style="text-align:center;"> 75 </td> <td style="text-align:center;"> 0.75 </td> <td style="text-align:center;"> 0.667 </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> </tr> <tr> <td style="text-align:center;"> 2 </td> <td style="text-align:center;"> 50 </td> <td style="text-align:center;"> 0.50 </td> <td style="text-align:center;"> 0.8 </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> </tr> <tr> <td style="text-align:center;"> 3 </td> <td style="text-align:center;"> 40 </td> <td style="text-align:center;"> 0.40 </td> <td style="text-align:center;"> 0 </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> </tr> <tr> <td style="text-align:center;"> 4 </td> <td style="text-align:center;"> 0 </td> <td style="text-align:center;"> 0.00 </td> <td style="text-align:center;"> - </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> </tr> </tbody> </table> --- ## Life tables ### Age-specific survival of fallow deer (*Dama dama*) .left-column[ <img src="https://upload.wikimedia.org/wikipedia/commons/f/f3/Fallow_deer_in_field.jpg" width="100%" style="display: block; margin: auto;" /> ] .right-column[ <img src="figs/dama_survival.png" width="70%" style="display: block; margin: auto;" /> ] ??? Image courtesy of Johann-Nikolaus Andreae, via Wikimedia Commons Figure from McElligott et al. (2002) *Proc Royal Society B* --- ## Life tables - `\(\Large q_x\)`: Probability of dying **between** age `\(x\)` the next age (of those alive at age `\(x\)`) - `\(\Large q_x = 1 - P_x\)` <br/> <table class="table table-striped table-hover table-condensed table-responsive" style="margin-left: auto; margin-right: auto;"> <thead> <tr> <th style="text-align:center;"> \(x\) </th> <th style="text-align:center;"> \(N_x\) </th> <th style="text-align:center;"> \(l_x\) </th> <th style="text-align:center;"> \(P_x\) </th> <th style="text-align:center;"> \(q_x\) </th> <th style="text-align:center;"> </th> </tr> </thead> <tbody> <tr> <td style="text-align:center;"> 0 </td> <td style="text-align:center;"> 100 </td> <td style="text-align:center;"> 1.00 </td> <td style="text-align:center;"> 0.75 </td> <td style="text-align:center;"> 0.25 </td> <td style="text-align:center;"> </td> </tr> <tr> <td style="text-align:center;"> 1 </td> <td style="text-align:center;"> 75 </td> <td style="text-align:center;"> 0.75 </td> <td style="text-align:center;"> 0.667 </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> </tr> <tr> <td style="text-align:center;"> 2 </td> <td style="text-align:center;"> 50 </td> <td style="text-align:center;"> 0.50 </td> <td style="text-align:center;"> 0.8 </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> </tr> <tr> <td style="text-align:center;"> 3 </td> <td style="text-align:center;"> 40 </td> <td style="text-align:center;"> 0.40 </td> <td style="text-align:center;"> 0 </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> </tr> <tr> <td style="text-align:center;"> 4 </td> <td style="text-align:center;"> 0 </td> <td style="text-align:center;"> 0.00 </td> <td style="text-align:center;"> - </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> </tr> </tbody> </table> --- ## Life tables - `\(\Large q_x\)`: Probability of dying **between** age `\(x\)` the next age (of those alive at age `\(x\)`) - `\(\Large q_x = 1 - P_x\)` <br/> <table class="table table-striped table-hover table-condensed table-responsive" style="margin-left: auto; margin-right: auto;"> <thead> <tr> <th style="text-align:center;"> \(x\) </th> <th style="text-align:center;"> \(N_x\) </th> <th style="text-align:center;"> \(l_x\) </th> <th style="text-align:center;"> \(P_x\) </th> <th style="text-align:center;"> \(q_x\) </th> <th style="text-align:center;"> </th> </tr> </thead> <tbody> <tr> <td style="text-align:center;"> 0 </td> <td style="text-align:center;"> 100 </td> <td style="text-align:center;"> 1.00 </td> <td style="text-align:center;"> 0.75 </td> <td style="text-align:center;"> 0.25 </td> <td style="text-align:center;"> </td> </tr> <tr> <td style="text-align:center;"> 1 </td> <td style="text-align:center;"> 75 </td> <td style="text-align:center;"> 0.75 </td> <td style="text-align:center;"> 0.667 </td> <td style="text-align:center;"> 0.333 </td> <td style="text-align:center;"> </td> </tr> <tr> <td style="text-align:center;"> 2 </td> <td style="text-align:center;"> 50 </td> <td style="text-align:center;"> 0.50 </td> <td style="text-align:center;"> 0.8 </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> </tr> <tr> <td style="text-align:center;"> 3 </td> <td style="text-align:center;"> 40 </td> <td style="text-align:center;"> 0.40 </td> <td style="text-align:center;"> 0 </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> </tr> <tr> <td style="text-align:center;"> 4 </td> <td style="text-align:center;"> 0 </td> <td style="text-align:center;"> 0.00 </td> <td style="text-align:center;"> - </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> </tr> </tbody> </table> --- ## Life tables - `\(\Large q_x\)`: Probability of dying **between** age `\(x\)` the next age (of those alive at age `\(x\)`) - `\(\Large q_x = 1 - P_x\)` <br/> <table class="table table-striped table-hover table-condensed table-responsive" style="margin-left: auto; margin-right: auto;"> <thead> <tr> <th style="text-align:center;"> \(x\) </th> <th style="text-align:center;"> \(N_x\) </th> <th style="text-align:center;"> \(l_x\) </th> <th style="text-align:center;"> \(P_x\) </th> <th style="text-align:center;"> \(q_x\) </th> <th style="text-align:center;"> </th> </tr> </thead> <tbody> <tr> <td style="text-align:center;"> 0 </td> <td style="text-align:center;"> 100 </td> <td style="text-align:center;"> 1.00 </td> <td style="text-align:center;"> 0.75 </td> <td style="text-align:center;"> 0.25 </td> <td style="text-align:center;"> </td> </tr> <tr> <td style="text-align:center;"> 1 </td> <td style="text-align:center;"> 75 </td> <td style="text-align:center;"> 0.75 </td> <td style="text-align:center;"> 0.667 </td> <td style="text-align:center;"> 0.333 </td> <td style="text-align:center;"> </td> </tr> <tr> <td style="text-align:center;"> 2 </td> <td style="text-align:center;"> 50 </td> <td style="text-align:center;"> 0.50 </td> <td style="text-align:center;"> 0.8 </td> <td style="text-align:center;"> 0.2 </td> <td style="text-align:center;"> </td> </tr> <tr> <td style="text-align:center;"> 3 </td> <td style="text-align:center;"> 40 </td> <td style="text-align:center;"> 0.40 </td> <td style="text-align:center;"> 0 </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> </tr> <tr> <td style="text-align:center;"> 4 </td> <td style="text-align:center;"> 0 </td> <td style="text-align:center;"> 0.00 </td> <td style="text-align:center;"> - </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> </tr> </tbody> </table> --- ## Life tables - `\(\Large q_x\)`: Probability of dying **between** age `\(x\)` the next age (of those alive at age `\(x\)`) - `\(\Large q_x = 1 - P_x\)` <br/> <table class="table table-striped table-hover table-condensed table-responsive" style="margin-left: auto; margin-right: auto;"> <thead> <tr> <th style="text-align:center;"> \(x\) </th> <th style="text-align:center;"> \(N_x\) </th> <th style="text-align:center;"> \(l_x\) </th> <th style="text-align:center;"> \(P_x\) </th> <th style="text-align:center;"> \(q_x\) </th> <th style="text-align:center;"> </th> </tr> </thead> <tbody> <tr> <td style="text-align:center;"> 0 </td> <td style="text-align:center;"> 100 </td> <td style="text-align:center;"> 1.00 </td> <td style="text-align:center;"> 0.75 </td> <td style="text-align:center;"> 0.25 </td> <td style="text-align:center;"> </td> </tr> <tr> <td style="text-align:center;"> 1 </td> <td style="text-align:center;"> 75 </td> <td style="text-align:center;"> 0.75 </td> <td style="text-align:center;"> 0.667 </td> <td style="text-align:center;"> 0.333 </td> <td style="text-align:center;"> </td> </tr> <tr> <td style="text-align:center;"> 2 </td> <td style="text-align:center;"> 50 </td> <td style="text-align:center;"> 0.50 </td> <td style="text-align:center;"> 0.8 </td> <td style="text-align:center;"> 0.2 </td> <td style="text-align:center;"> </td> </tr> <tr> <td style="text-align:center;"> 3 </td> <td style="text-align:center;"> 40 </td> <td style="text-align:center;"> 0.40 </td> <td style="text-align:center;"> 0 </td> <td style="text-align:center;"> 1 </td> <td style="text-align:center;"> </td> </tr> <tr> <td style="text-align:center;"> 4 </td> <td style="text-align:center;"> 0 </td> <td style="text-align:center;"> 0.00 </td> <td style="text-align:center;"> - </td> <td style="text-align:center;"> - </td> <td style="text-align:center;"> </td> </tr> </tbody> </table> --- exclude: true ## Life tables - `\(\Large H_x\)`: Hazard (i.e., risk) of dying **between** age `\(x\)` the next age (of those alive at age `\(x\)`) - `\(\Large H_x = -log(P_x)\)` <br/> <table class="table table-striped table-hover table-condensed table-responsive" style="margin-left: auto; margin-right: auto;"> <thead> <tr> <th style="text-align:center;"> \(x\) </th> <th style="text-align:center;"> \(N_x\) </th> <th style="text-align:center;"> \(l_x\) </th> <th style="text-align:center;"> \(P_x\) </th> <th style="text-align:center;"> \(q_x\) </th> <th style="text-align:center;"> \(H_x\) </th> </tr> </thead> <tbody> <tr> <td style="text-align:center;"> 0 </td> <td style="text-align:center;"> 100 </td> <td style="text-align:center;"> 1.00 </td> <td style="text-align:center;"> 0.75 </td> <td style="text-align:center;"> 0.25 </td> <td style="text-align:center;"> 0.29 </td> </tr> <tr> <td style="text-align:center;"> 1 </td> <td style="text-align:center;"> 75 </td> <td style="text-align:center;"> 0.75 </td> <td style="text-align:center;"> 0.667 </td> <td style="text-align:center;"> 0.333 </td> <td style="text-align:center;"> 0.4 </td> </tr> <tr> <td style="text-align:center;"> 2 </td> <td style="text-align:center;"> 50 </td> <td style="text-align:center;"> 0.50 </td> <td style="text-align:center;"> 0.8 </td> <td style="text-align:center;"> 0.2 </td> <td style="text-align:center;"> 0.22 </td> </tr> <tr> <td style="text-align:center;"> 3 </td> <td style="text-align:center;"> 40 </td> <td style="text-align:center;"> 0.40 </td> <td style="text-align:center;"> 0 </td> <td style="text-align:center;"> 1 </td> <td style="text-align:center;"> Inf </td> </tr> <tr> <td style="text-align:center;"> 4 </td> <td style="text-align:center;"> 0 </td> <td style="text-align:center;"> 0.00 </td> <td style="text-align:center;"> - </td> <td style="text-align:center;"> - </td> <td style="text-align:center;"> - </td> </tr> </tbody> </table> --- ## Life tables #### Cohort tables - Assume that all live individuals are available for observation at every age until death - Most readily applied to: + Human populations (e.g., CDC NCHS) + Plants + Sessile animals + Mobile animals on small islands with high observer detection + Animals in captivity (zoos) --- ## Life tables #### Static tables - assess number of individuals of known age at one point in time or the age of individuals dying at any point in time <img src="Lecture7_files/figure-html/stat_cohort-1.png" width="504" style="display: block; margin: auto;" /> --- ## Static life tables - `\(\Large a_x\)`: Deaths between age `\(\large x-1\)` and age `\(\Large x\)` <br/> <table class="table table-striped table-hover table-condensed table-responsive" style="margin-left: auto; margin-right: auto;"> <thead> <tr> <th style="text-align:center;"> \(x\) </th> <th style="text-align:center;"> \(a_x\) </th> <th style="text-align:center;"> </th> <th style="text-align:center;"> </th> <th style="text-align:center;"> </th> <th style="text-align:center;"> </th> </tr> </thead> <tbody> <tr> <td style="text-align:center;"> 0 </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> </tr> <tr> <td style="text-align:center;"> 1 </td> <td style="text-align:center;"> 25 </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> </tr> <tr> <td style="text-align:center;"> 2 </td> <td style="text-align:center;"> 15 </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> </tr> <tr> <td style="text-align:center;"> 3 </td> <td style="text-align:center;"> 10 </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> </tr> <tr> <td style="text-align:center;"> 4 </td> <td style="text-align:center;"> 7 </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> </tr> </tbody> </table> -- `\(\large \sum_{x=0}^{max(x)} a_x = 57\)` --- ## Static life tables - `\(\Large a_x\)`: Deaths between age `\(\large x-1\)` and age `\(\Large x\)` <br/> <table class="table table-striped table-hover table-condensed table-responsive" style="margin-left: auto; margin-right: auto;"> <thead> <tr> <th style="text-align:center;"> \(x\) </th> <th style="text-align:center;"> \(a_x\) </th> <th style="text-align:center;"> \(N_x\) </th> <th style="text-align:center;"> </th> <th style="text-align:center;"> </th> <th style="text-align:center;"> </th> </tr> </thead> <tbody> <tr> <td style="text-align:center;"> 0 </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> 57 </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> </tr> <tr> <td style="text-align:center;"> 1 </td> <td style="text-align:center;"> 25 </td> <td style="text-align:center;"> 57-25=32 </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> </tr> <tr> <td style="text-align:center;"> 2 </td> <td style="text-align:center;"> 15 </td> <td style="text-align:center;"> 32-15=17 </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> </tr> <tr> <td style="text-align:center;"> 3 </td> <td style="text-align:center;"> 10 </td> <td style="text-align:center;"> 17-10=7 </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> </tr> <tr> <td style="text-align:center;"> 4 </td> <td style="text-align:center;"> 7 </td> <td style="text-align:center;"> 7-7=0 </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> </tr> </tbody> </table> `\(\large \sum_{x=0}^{max(x)} a_x = 57\)` --- ## Static life tables - `\(\Large a_x\)`: Deaths between age `\(\large x-1\)` and age `\(\Large x\)` <br/> <table class="table table-striped table-hover table-condensed table-responsive" style="margin-left: auto; margin-right: auto;"> <thead> <tr> <th style="text-align:center;"> \(x\) </th> <th style="text-align:center;"> \(a_x\) </th> <th style="text-align:center;"> \(N_x\) </th> <th style="text-align:center;"> \(l_x\) </th> <th style="text-align:center;"> \(P_x\) </th> <th style="text-align:center;"> etc. </th> </tr> </thead> <tbody> <tr> <td style="text-align:center;"> 0 </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> 57 </td> <td style="text-align:center;"> 1.00 </td> <td style="text-align:center;"> 0.56 </td> <td style="text-align:center;"> </td> </tr> <tr> <td style="text-align:center;"> 1 </td> <td style="text-align:center;"> 25 </td> <td style="text-align:center;"> 57-25=32 </td> <td style="text-align:center;"> 0.56 </td> <td style="text-align:center;"> 0.54 </td> <td style="text-align:center;"> </td> </tr> <tr> <td style="text-align:center;"> 2 </td> <td style="text-align:center;"> 15 </td> <td style="text-align:center;"> 32-15=17 </td> <td style="text-align:center;"> 0.30 </td> <td style="text-align:center;"> 0.4 </td> <td style="text-align:center;"> </td> </tr> <tr> <td style="text-align:center;"> 3 </td> <td style="text-align:center;"> 10 </td> <td style="text-align:center;"> 17-10=7 </td> <td style="text-align:center;"> 0.12 </td> <td style="text-align:center;"> 0 </td> <td style="text-align:center;"> </td> </tr> <tr> <td style="text-align:center;"> 4 </td> <td style="text-align:center;"> 7 </td> <td style="text-align:center;"> 7-7=0 </td> <td style="text-align:center;"> 0.00 </td> <td style="text-align:center;"> - </td> <td style="text-align:center;"> </td> </tr> </tbody> </table> --- ## Static life tables #### Static life tables most readily applied to: - Plants and animals where age can be accurately determined for all individuals at a given moment in time - e.g., using the rings/layering in trees, teeth, otoliths, horns, and maybe even telomere length on genes --- ## Static life tables #### Static life table assumptions: - All individuals have equivalent availability for observation, regardless of age - Stable age distribution - Age-specific survival `\(\Large (P_x)\)` does not change over time + If it does, time effects may appear as ‘age effects’ and lead to biased results --- class: inverse, middle, center # Survivorship curves --- ## Survivorship curves <img src="Lecture7_files/figure-html/surv_curv1-1.png" width="648" style="display: block; margin: auto;" /> -- #### **Type II Survivorship curve** (Pearl 1928) --- ## Survivorship curves <img src="Lecture7_files/figure-html/surv_curve2-1.png" width="504" style="display: block; margin: auto;" /> --- ## Survivorship curves ### What types of species do you expect have type 1 survivorship curves? -- <img src="figs/sweden_survivorship.png" width="50%" style="display: block; margin: auto;" /> --- ## Survivorship curves ### What types of species do you expect have type 2 survivorship curves? -- .left-column[ <img src="https://upload.wikimedia.org/wikipedia/commons/7/7c/Eastern_Grey_Squirrel_in_St_James%27s_Park%2C_London_-_Nov_2006_edit.jpg" width="100%" style="display: block; margin: auto;" /> ] .right-column[ <img src="figs/squirell_survivorship.png" width="50%" style="display: block; margin: auto;" /> ] ??? Image courtesy of Diliff, from Wikimedia Commons Figure from Barkalow et al. (1970) --- ## Survivorship curves ### What types of species do you expect have type 3 survivorship curves? -- .left-column[ <img src="https://upload.wikimedia.org/wikipedia/commons/8/89/Little_Bluestem_P7280448.JPG" width="100%" style="display: block; margin: auto;" /> ] .right-column[ <img src="figs/plant_survivorship.png" width="50%" style="display: block; margin: auto;" /> ] ??? Image courtesy of Chris Light, from Wikimedia Commons Figure from Lauenroth & Adler (2008) --- class: middle, center, inverse # Life expectancy --- ## Life expectancy #### Life Expectancy > The average length of time an individual is expected to live, given they are currently `\(x\)` years old - Directly related to the probability of surviving to a given age -- #### Utah has the lowest per capita crude death rate in the U.S. (averaged across all ages) -- ### Can Utahns expect to live longer than in all other states? ??? crude death rate means the average death rate across all individuals in the population, regardless of age --- ## Life expectancy #### To estimate life expectancy, start with `\(\Large l_x\)` - `\(\Large l_x\)` = Proportion of individuals still alive at age `\(\Large x\)` <table class="table table-striped table-hover table-condensed table-responsive" style="margin-left: auto; margin-right: auto;"> <thead> <tr> <th style="text-align:center;"> \(x\) </th> <th style="text-align:center;"> \(N_x\) </th> <th style="text-align:center;"> \(l_x\) </th> <th style="text-align:center;"> </th> <th style="text-align:center;"> </th> <th style="text-align:center;"> </th> </tr> </thead> <tbody> <tr> <td style="text-align:center;"> 0 </td> <td style="text-align:center;"> 100 </td> <td style="text-align:center;"> 1.00 </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> </tr> <tr> <td style="text-align:center;"> 1 </td> <td style="text-align:center;"> 75 </td> <td style="text-align:center;"> 0.75 </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> </tr> <tr> <td style="text-align:center;"> 2 </td> <td style="text-align:center;"> 50 </td> <td style="text-align:center;"> 0.50 </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> </tr> <tr> <td style="text-align:center;"> 3 </td> <td style="text-align:center;"> 40 </td> <td style="text-align:center;"> 0.40 </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> </tr> <tr> <td style="text-align:center;"> 4 </td> <td style="text-align:center;"> 0 </td> <td style="text-align:center;"> 0.00 </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> </tr> </tbody> </table> --- ## Life expectancy - `\(\Large L_x\)`: Average proportion of living individuals across successive age classes - `\(\Large L_x = \frac{l_x+l_{x+1}}{2}\)` <table class="table table-striped table-hover table-condensed table-responsive" style="margin-left: auto; margin-right: auto;"> <thead> <tr> <th style="text-align:center;"> \(x\) </th> <th style="text-align:center;"> \(N_x\) </th> <th style="text-align:center;"> \(l_x\) </th> <th style="text-align:center;"> \(L_x\) </th> <th style="text-align:center;"> </th> <th style="text-align:center;"> </th> </tr> </thead> <tbody> <tr> <td style="text-align:center;"> 0 </td> <td style="text-align:center;"> 100 </td> <td style="text-align:center;"> 1.00 </td> <td style="text-align:center;"> 0.875 </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> </tr> <tr> <td style="text-align:center;"> 1 </td> <td style="text-align:center;"> 75 </td> <td style="text-align:center;"> 0.75 </td> <td style="text-align:center;"> 0.625 </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> </tr> <tr> <td style="text-align:center;"> 2 </td> <td style="text-align:center;"> 50 </td> <td style="text-align:center;"> 0.50 </td> <td style="text-align:center;"> 0.45 </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> </tr> <tr> <td style="text-align:center;"> 3 </td> <td style="text-align:center;"> 40 </td> <td style="text-align:center;"> 0.40 </td> <td style="text-align:center;"> 0.2 </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> </tr> <tr> <td style="text-align:center;"> 4 </td> <td style="text-align:center;"> 0 </td> <td style="text-align:center;"> 0.00 </td> <td style="text-align:center;"> - </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> </tr> </tbody> </table> --- ## Life expectancy - `\(\Large T_x\)`: total proportion of living individuals from age `\(x\)` to `\(max(x)\)` <img src="Lecture7_files/figure-html/Tx-1.png" width="576" style="display: block; margin: auto;" /> --- ## Life expectancy - `\(\Large T_x\)`: total proportion of living individuals from age `\(x\)` to `\(max(x)\)` <img src="Lecture7_files/figure-html/Tx2-1.png" width="576" style="display: block; margin: auto;" /> --- ## Life expectancy - `\(\Large T_x\)`: total proportion of living individuals from age `\(x\)` to `\(max(x)\)` - `\(\Large T_x = \sum_x^{max(x)}L_x\)` <table class="table table-striped table-hover table-condensed table-responsive" style="margin-left: auto; margin-right: auto;"> <thead> <tr> <th style="text-align:center;"> \(x\) </th> <th style="text-align:center;"> \(N_x\) </th> <th style="text-align:center;"> \(l_x\) </th> <th style="text-align:center;"> \(L_x\) </th> <th style="text-align:center;"> \(T_x\) </th> <th style="text-align:center;"> </th> </tr> </thead> <tbody> <tr> <td style="text-align:center;"> 0 </td> <td style="text-align:center;"> 100 </td> <td style="text-align:center;"> 1.00 </td> <td style="text-align:center;"> 0.875 </td> <td style="text-align:center;"> 2.15 </td> <td style="text-align:center;"> </td> </tr> <tr> <td style="text-align:center;"> 1 </td> <td style="text-align:center;"> 75 </td> <td style="text-align:center;"> 0.75 </td> <td style="text-align:center;"> 0.625 </td> <td style="text-align:center;"> 1.275 </td> <td style="text-align:center;"> </td> </tr> <tr> <td style="text-align:center;"> 2 </td> <td style="text-align:center;"> 50 </td> <td style="text-align:center;"> 0.50 </td> <td style="text-align:center;"> 0.45 </td> <td style="text-align:center;"> 0.65 </td> <td style="text-align:center;"> </td> </tr> <tr> <td style="text-align:center;"> 3 </td> <td style="text-align:center;"> 40 </td> <td style="text-align:center;"> 0.40 </td> <td style="text-align:center;"> 0.2 </td> <td style="text-align:center;"> 0.2 </td> <td style="text-align:center;"> </td> </tr> <tr> <td style="text-align:center;"> 4 </td> <td style="text-align:center;"> 0 </td> <td style="text-align:center;"> 0.00 </td> <td style="text-align:center;"> - </td> <td style="text-align:center;"> - </td> <td style="text-align:center;"> </td> </tr> </tbody> </table> --- ## Life expectancy - `\(\Large E_x\)`: Number of additional years an individual of age `\(x\)` is expected to survive - `\(\Large E_x = T_x/l_x\)` <table class="table table-striped table-hover table-condensed table-responsive" style="margin-left: auto; margin-right: auto;"> <thead> <tr> <th style="text-align:center;"> \(x\) </th> <th style="text-align:center;"> \(N_x\) </th> <th style="text-align:center;"> \(l_x\) </th> <th style="text-align:center;"> \(L_x\) </th> <th style="text-align:center;"> \(T_x\) </th> <th style="text-align:center;"> \(E_x\) </th> </tr> </thead> <tbody> <tr> <td style="text-align:center;"> 0 </td> <td style="text-align:center;"> 100 </td> <td style="text-align:center;"> 1.00 </td> <td style="text-align:center;"> 0.875 </td> <td style="text-align:center;"> 2.15 </td> <td style="text-align:center;"> 2.15 </td> </tr> <tr> <td style="text-align:center;"> 1 </td> <td style="text-align:center;"> 75 </td> <td style="text-align:center;"> 0.75 </td> <td style="text-align:center;"> 0.625 </td> <td style="text-align:center;"> 1.275 </td> <td style="text-align:center;"> 1.7 </td> </tr> <tr> <td style="text-align:center;"> 2 </td> <td style="text-align:center;"> 50 </td> <td style="text-align:center;"> 0.50 </td> <td style="text-align:center;"> 0.45 </td> <td style="text-align:center;"> 0.65 </td> <td style="text-align:center;"> 1.3 </td> </tr> <tr> <td style="text-align:center;"> 3 </td> <td style="text-align:center;"> 40 </td> <td style="text-align:center;"> 0.40 </td> <td style="text-align:center;"> 0.2 </td> <td style="text-align:center;"> 0.2 </td> <td style="text-align:center;"> 0.5 </td> </tr> <tr> <td style="text-align:center;"> 4 </td> <td style="text-align:center;"> 0 </td> <td style="text-align:center;"> 0.00 </td> <td style="text-align:center;"> - </td> <td style="text-align:center;"> - </td> <td style="text-align:center;"> - </td> </tr> </tbody> </table> --- ## Utah life expectancy #### Utah has the lowest per capita crude death rate d in the U.S ### Can Utahns expect to live longer than all other states? -- ### Not exactly - Life expectancy of a newborn Utahn is 80.2 <br/> -- - Ranked 14th in the U.S., not first --- ## Utah life expectancy #### Why is Utah’s crude per capita death rate `\(\Large d\)` so low? -- #### Because Utah has the highest birth rate and consequently the youngest age structure - % of Utahns < 18 yrs old is 32% - % of U.S. < 18 yrs old is 25% -- - % of Utahns ≥ 65 is 11% - % of U.S. ≥ 65 = 15% -- #### Young individuals have highest chances of survival #### Having many young individuals in a population will skew the crude average `\(\Large d\)`